

Panel Members:

Warren Naylor

John Covan, PhD

Mike Brown

Ron Stroup

Uma Ferrell

BAE Systems

Sandia National Labs.

NSWCDD Code G71

FAA AIO 200

FAA Consulting

Defining COTS

➤COTS products encompass a wide variety of general-purpose off-the-shelf products (HW or SW), Non Developmental Items (NDI) and Previously Developed Software (PDS).

Note: Some of these products are designed to be user selectable/modifiable (e.g., a compiler). Vendor supplied modifications or selectables are still considered COTS. However, it must be understood that once a program modifies or enhances COTS software to meet their respective system requirements, then the modified COTS must be considered application code, subject to all certification requirements, with exception.

Why COTS?

➤ Primary drivers:

- Cost
- Schedule
- Timely replacement of legacy systems
- Keeping pace with emerging technologies
- Lack of viable alternatives

How Did We Get Here?

Economic pressures and the much larger market place drive COTS products. The Government is no longer the leader or even a trendsetter in the market place. The Government has taken the position of Better, Faster, Cheaper and has identified COTS as the vehicle towards that end.

COTS Issues and Concerns

- ➤ Obsolescence
- >> Version Control
- > Vendor support
- Testing Issues (regression testing)
- Robustness of Vendor's testing is Unknown
- Inability to perform adequate structural coverage
- Maintenance
- > Training

- Product Maturity
- > Undisclosed Problems
- Absence of COTS Data (e.g., source code, test, validation, etc.)
- Vendor's Development Process is Unknown
- Lack of knowledge in determining the best COTS product for your needs
- ➤ Security

Security Issues With COTS

- COTS products are inherently susceptible to intrusion
- COTS developers are:
 - Outside the control of the developing and contracting organizations!
 - COTS development personnel in all likelihood, do not possess a security clearance!
 - Many COTS products are developed in designated countries which may be sympathetic and possibly even supportive of terrorist organizations!
 - Outside organizations know more about your vulnerabilities than you do and can take advantage of them!
 - Time bombs can be placed within code that is virtually impossible to detect without the source code, etc. !

Safety's Role

It is the safety community's responsibility to take a proactive leadership role in mitigating the risk of COTS.

Safety's Role

➤ Safety cannot be perceived as a stop sign as program's will quickly learn to bypass safety to meet their objectives.

We cannot, as a community, only present concerns and objections; we must also suggest solutions and alternatives.

More Effective

Issues Related to Integrating COTS Into Mission/Safety Critical Systems

John Covan

Airworthiness Assurance Department Sandia National Laboratories Albuquerque, NM

International System Safety Conference September 12, 2001

What is COTS?

- COTS: Commercial Off-the Shelf
 - a product designed & built to pre-existing, generic requirements
 - Could be hardware, could be software
 - Could be both

But why use COTS?

COTS Promises Up-Front Savings

- Faster
 - no development cycle
 - short lead time

Cheaper

- Large quantity builds
- R&D amortized over long time & many customers
- Industry has lower overhead than for captive facility
 - cheaper labor
 - cheaper security costs

What Application of COTS?

- **COTS** piece-parts
 - Hardware
 - Software subroutine

- COTS subsystems
 - Hardware ensemble
 - Hardware/Software subsystem
- COTS turnkey system

All Types of Systems Are Threatened by Stressing Environments

Normal

- (occurs regularly)
 - operating environments (vibration, thermal cycling, aging)
 - inadvertent human error

Abnormal

- (occurs at intervals)
 - accident environments (shock, crush, fire, immersion)
 - compounded by human error

Malevolent

- (occurs at intervals)
 - sabotage
 - outsider attack
 - insider attack

Stressing Environments Spawn Requirements

Normal

Abnormal

Malevolent

Malevolent

Model

Mo

What Do You Give Up With COTS?

Control

- design may change over the product build to conform to availability of new materials or technology
- product may vary from lot-to-lot by manufacture at a variety of facilities

Information

- You don't know what went into it or who built it
- You may not have access to source code

Does Using More and More COTS Cause Problems?

And Are the Problems Surmountable?

Some Retroactive Strategies

- > Increased acceptance testing
- ➤ Blind buys
- >> Special build using screened employees

Problems With Retroactive Strategies

- Increased cost, increased schedule
 - From attempts to establish control that was not there in the first place
- Nagging doubts from incomplete information
 - · Poor records of design, manufacture & installation
 - Proprietary information withheld
 - Source code withheld

Problems With Retroactive Strategies

- Strategies may be ineffective in the face of malevolence
 - Vulnerabilities can include degraded materials, changes in dimensions, substituted parts, etc.
 - Especially vulnerable when software is used *
 - Trojan horses
 - Time bombs
 - Logic bombs

*see Why COTS Software Increases Security Risks

http://www.cigital.com/services/safety.html

Using COTS Implies Responsibility

Using COTS is **not** an excuse for

failing to meet system requirements

The Faster-Better-Cheaper Triangle

22

Buy now, pay later

issc_19

More Cheap Shots...

> If you want it bad, you'll get it bad

➤ The best way to make a silk purse out of a sow's ear is to start with a silk sow

Is There a 'Total Lack of Alternatives' to COTS?

- No! Do surety-critical "fencing"...
- >relegate surety-critical functions to small, walled-off portions of the system
 - develop, manufacture and install these functions in house
 - remainder of system can use some version of COTS

Uma Ferrell

FAA Consulting

International System Safety Conference September 12, 2001

SW Guidelines For CNS/ATM Systems- Background

- ➤RTCA SC 190 was chartered to document guidelines for CNS/ATM systems
- Committee comprised of airborne community as well as ground community from US and Europe
 - Cultural differences
 - Domain differences
 - Language (phraseology) differences
 - Differences in the model for fielding a system

Domain Characteristics of CNS/ATM Systems

- ➤ Very large systems compared to avionics
- ➤ High use of COTS (telecommunications, for example)
- ➤ Systems are <u>acquired</u> and commissioned for use in the ground infrastructure.
- There are site differences in ground systems. The adaptation data is subject to verification.

Domain Characteristics of CNS/ATM Systems-2

- ➤ Shadow operations for gaining confidence in the system as well as to train new controllers
- >>24/7 use unlike airborne systems
 - Continuous maintenance support
 - Live insertion of updates
 - Possibility of cumulative systemic errors

COTS and Safety in CNS/ATM Systems

- ➤COTS received special attention in the document.
- ➤ Many issues documented in the guidelines were recognized to be business guidelines with safety effect.
- ➤ COTS acquisition model is considered within the CNS/ATM development model

COTS – a Part of the Bigger System

- ➤ COTS Planning-within the context of the CNS/ATM system
- Assessment and selection to form the basis of acquisition
- Development of any "glue code", partitioning, safety kernels, interface particular software
- >Verification
 - No less than verification of developmental systems
 - Within the context of the CNS/ATM system

Taking Advantage of the Domain Practices

- ➤ Guarded use of service experience for assurance credit to supplement other data
 - Not applied at the highest level of safety
 - To be negotiated for the next lower level
 - 8,760 service hours (one year) of continuous fault free operation for the next lower level
 - 4,380 service hours (six months) of continuous fault-free operation for the next lower level
 - May not need use of service experience credit

Six assurance levels are defined for CNS/ATM systems

Service Experience Conditions

- ➤ Use this data only to supplement other data
 - Planning, Acquisition (assessment and selection)
 CM, QA
- Assure that data is collected during operations with real operational data, in relevant use, and in the same target environment.
- ➤If the changes (HW/SW) are safety related, restart the clock.
- ➤ If the changes affect already collected data, restart the clock.

More Conditions to Enable Use of Service Experience

>Cover

- All of the CNS/ATM needed functionality- analysis
- All combinations of data input-analysis
- All operational modes-analysis
- ➤ Analyze all service problems.
- Compute the service experience duration correctly noting that all safety-related problems restart the clock.
- ➤ Prove that unintended COTS capabilities do not affect CNS/ATM system operation.

Scrutiny to Assure Safety

- Safety Assessment Establish level of assurance
- ➤ Life Cycle Data particular to COTS
 - Planning
 - Acquisition
 - Any developmental data
 - Verification Data
 - COTS testing and Integration testing
 - Time Duration-engineering judgment
 - Similarity of Operation/Environment
 - Problem Reporting
 - Analysis data
 - CM/QA within the context of CNS/ATM system
- ➤ Life Cycle data for any new SW (glue code)